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01000 México DF, Mexico

E-mail: moshi@fisica.unam.mx and sadurni@fisica.unam.mx

Received 9 November 2005
Published 16 May 2006
Online at stacks.iop.org/JPhysA/39/7039

Abstract
In the present paper we compute the propagator of a quantum mechanical
system whose Hamiltonian consists of two commuting terms, the spin–orbit
coupling being one of them. We assume that the propagator corresponding to
the first part can be cast into a closed form. A detailed treatment is given when
such term is set as the simple harmonic oscillator. Some applications are also
included.

PACS number: 03.65.Ge

1. Introduction

In the study of transient phenomena in quantum mechanics the concept of propagator is of vital
importance. Furthermore, the existence of a closed form of such propagator leads immediately
to the possibility of analysing many effects in an exact way. Our objective is to compute the
propagator corresponding to idealized systems which can be physically realized in the study
of atomic nuclei, as well as in quasi-relativistic systems such as those described by the Pauli
Hamiltonian or by Hamiltonians emerging from a Foldy–Wouthuysen transformation (for
applications to compound systems see Hamiltonians (25) and (28) in [1]). In particular, we
will focus on the explicit form of the propagator corresponding to a Hamiltonian written as an
exactly solvable part plus the spin–orbit term.

We have organized this paper as follows. In section 2 we observe that for spherically
symmetric problems the complete Hamiltonian commutes with the spin–orbit part. Therefore
we express the complete propagator as the action of a rotation on the explicitly known kernel
corresponding to the problem without coupling. Since the propagator for the harmonic
oscillator lies in this category we study this example from the viewpoint of phase space
symmetry in section 3. Section 4 is devoted to some applications. Transient effects due
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to sudden interactions have been studied since long ago by Moshinsky, so we analyse the
evolution of states due to the sudden introduction of spin–orbit coupling in section 4.1. The
evolution of a translated Gaussian distribution for the harmonic oscillator and spin–orbit term is
included in section 4.2. In section 4.3 we derive some formulae for special cases in connection
with the spectral decomposition of our newly obtained propagator.

2. General Hamiltonian

Consider physical units such that h̄ = 1. We start with a time-independent Hamiltonian of the
form

H = H1 + H2, (1)

where the terms H1 and H2 commute but may depend on the same phase space variables. Now
we look at the evolution operator and write

exp(−iHt) = exp(−iH1t) exp(−iH2t). (2)

Therefore, its propagator can easily be written as

K(x, x ′; t) = 〈x| exp(−iHt)|x ′〉 =
∫

dx ′′〈x| exp(−iH1t)|x ′′〉〈x ′′| exp(−iH2t)|x ′〉, (3)

or

K(x, x ′; t) =
∫

dx ′′〈x| exp(−iH2t)|x ′′〉〈x ′′| exp(−iH1t)|x ′〉

=
∫

dx ′′K2(x, x ′′; t)K1(x
′′, x ′; t). (4)

The last expression is useful in the case when both propagators K1(x, x ′′; t),K2(x
′′, x ′; t) are

known explicitly with the remaining problem of performing an integration. The propagator
K2 can be written as

〈x| exp(−iH2t)|x ′′〉 = exp

(
−itH2

(
−i

∂

∂x
, x

))
δ(x − x ′′) (5)

and inserting back in (3) we obtain

K(x, x ′; t) = exp

(
−itH2

(
−i

∂

∂x
, x

))
K1(x, x ′; t), (6)

which is quite general. Equation (6) can also be written interchanging indices 1 and 2. From
this point we reduce our treatment to the case H2 = αL · S and H1 spherically symmetric so
that [H1,H2] = 0. Then (6) becomes

K(r, r′; t) = exp(−itαL · S)K1(r, r′; t), (7)

where L = −ir × ∇, i.e. its differential representation. The operator on the RHS of (7) has
the form of a rotation of coordinates r in its functional representation though the parameters
Si are no longer numbers (or Euler angles) but operators. That we can call it a rotation comes
from the fact that it is a unitary operator and we can find its finite-dimensional representation
acting on spatial coordinates. In fact, there is no difficulty in proving the formula

exp(iφL · S)f (r) = f (exp(φM · S)r) (8)

for any (locally) analytic function f and non-commuting Si . We have defined the vector of
matrices (Mij )k = εijk , i.e. the antisymmetric generators of the rotation in their Cartesian
representation where φ is regarded as real. The proof of (8) goes as follows.
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Let R := eM·Sφ and U := eiL·Sφ . For any analytical function f we have

f (Rr) =
∞∑

n=0

φn

n!

∂nf

∂φn

∣∣∣∣
φ=0

=
∞∑

n=0

φn

n!

(
∂r ′

i

∂φ

∂

∂r ′
i

)n

f (r′)|r′=r

=
∞∑

n=0

φn

n!

(
∂(Rr)i

∂φ

∣∣∣∣
φ=0

∂

∂r ′
i

)n

f (r′)|r′=r

=
∞∑

n=0

φn

n!

(
(Mji)kSkri

∂

∂rj

)n

f (r)

=
∞∑

n=0

(iφ)n

n!

(
−iεijkri

∂

∂rj

Sk

)n

f (r) = eiL·Sφf (r) = Uf (r), (9)

so the chain rule is sufficient to prove (8), regardless of the group structure of Si . Note, however,
that the result of the operation Rr is spin dependent while the product r2 is preserved.

With (8) in mind, the general form of our propagator reads

K(r, r′; t) = K1(exp(−tαM · S)r, r′; t), (10)

and the complete propagator K is known explicitly as K1 has been assumed to be so. We must
point out, however, that for (10) to be of any use it is necessary to compute exp(−tαM · S)r
explicitly. This will be done in the appendix. Another way to confirm (10) is by looking at
the propagator equation{

H(−i∇, r, S) − i
∂

∂t

}
K(r, r′; t) = −iδ3(r − r′)δ(t), (11)

noting that

αL · S − i
∂

∂t
= exp(−iαL · St)

(
−i

∂

∂t

)
exp(iαL · St) (12)

and

exp(−iαL · St)H1(p, r) exp(iαL · S) = H1(p, r), (13)

(11) is equivalent to

exp(−iαL · St)

{
H1(−i∇, r) − i

∂

∂t

}
exp(iαL · St)K(r, r′; t) = −iδ3(r − r′)δ(t), (14)

and can also be written as{
H1(−i∇, r) − i

∂

∂t

}
K(exp(αM · St)r, r′; t) = −i exp(iαL · St)δ3(r − r′)δ(t)

= −iδ3(r − r′)δ(t), (15)

the last equality coming from f (t)δ(t) = f (0)δ(t). Finally, (15) implies

K1(r, r′; t) = K(exp(tαM · S)r, r′; t), (16)

which is equivalent to result (10). Let us remark that a generalization of this method may be
established by considering the addition of a Hamiltonian with the generators of its symmetry
in scalar product with some constant operators.
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3. The propagator of the harmonic oscillator with spin–orbit coupling from
phase space symmetry

Consider units h̄ = 1 and for simplicity choose m̄ = 1/2, ω = 2 for the mass and frequency
of the oscillator. The Hamiltonian of our problem is

H = p2 + r2 + αr × p · S, (17)

S being any spin. The phase space symmetry of this problem is easily described by applying
a linear (spin-dependent) canonical transformation to r and p, i.e.(

r′

p′

)
=

(
A B

C D

)(
r
p

)
, (18)

with DÃ − CB̃ = I, BÃ = AB̃,CD̃ = DC̃. For the symmetry of the oscillator we require
the matrix in (18) to be an element of O(6). The invariance of the spin–orbit term admits
a transformation of the spin S′ = RS with R an element of O(3), while the orbital angular
momentum is transformed into

r′ × p′ = (Ar + Bp) × (Cr + Dp) = R(r × p). (19)

The last equality is satisfied for all r, p iff A,B,C,D are all proportional to R. This is written
as (

A B

C D

)
=

(
αR βR

γR δR

)
. (20)

Orthogonality is fulfilled when the proportionality factors are trigonometric functions, i.e.
α2 +β2 = γ 2 +δ2 = 1 and αγ +βδ = 0. Therefore, the most general canonical transformation
leaving H invariant is(

cos φR sin φR

−sinφR cos φR

)
(21)

for any real φ. The spatial matrix elements of the corresponding unitary transformation
U satisfy a well-known equation written in (36.21) of [2]. The general solution for a
transformation of the form (21) is given by

〈r|U |r′〉 = (2π sin φ)−3/2 exp

(−i

2
{(r2 + r ′ 2) cot φ − 2 csc φ(Rr) · r′}

)
, (22)

and we are interested in the explicit form of the functions φ(t), R(t). When U is the evolution
operator, the LHS of (22) is the propagator of our problem and is also a solution of the equation{

H − i
∂

∂t

}
〈r|U |r′〉 = −iδ3(r − r′)δ(t). (23)

For r �= r′ this equation becomes homogeneous. The replacement of (22) and (17) in (23)
leads to first and second spatial as well as time derivatives of 〈r|U |r′〉, which are in turn
〈r|U |r′〉 multiplied by a polynomial in the variables r2, r ′ 2 and rr ′. Thus, r �= r′ in (23) gives
rise to a set of homogeneous equations for the coefficients of our polynomial. The equations
emerging from terms which do not contain rr ′ turn out to be equivalent and so we write only
the equation corresponding to the coefficient of r ′ 2

− 1

2

∂ cot φ

∂t
+ csc2 φ = 0 (24)

with solution ∂φ

∂t
= −2. The coefficient of rr ′ yields

α csc φRlj εijkSk +
∂

∂t
(csc φR−1)il − 2 cot φ csc φ(R−1)il = 0, (25)
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after adopting the sum convention over the index j = 1, 2, 3. Using the solution of (24), (25)
can be reduced to

−αM · S = ∂R

∂t
R−1 (26)

with solution R = exp(−αM · St). The integration constant is set equal to unity so that R is
in effect a rotation. Returning to our general solution (22) with these results we find that

K(r, r′; t) = 〈r|U |r′〉 = Koscillator(Rr, r′; t), (27)

where the actual formula for Koscillator can be found in [4]. We write the complete expression
restoring the frequency ω and mass m̄,

K(r, r′; t) =
(

m̄ω

2π i sin ωt

) 3
2

exp

(
im̄ω

2
{(r2 + r ′ 2) cot ωt − 2 csc ωt(e−αM·Str) · r′}

)
. (28)

Thus, we have arrived at the sought propagator satisfying (10) by following a different path.
More than confirming our earlier results, this example has been worked out to illustrate that
the direct study of phase space symmetries may lead to a closed expression for K(r, r′; t).

4. Applications

4.1. The spin–orbit coupling as a sudden perturbation

Before studying a direct application of our propagator (10), we analyse the sudden introduction
of the spin–orbit coupling in order to compare it with the case in which such a term is absent.
Let us consider a system which is described by a Hamiltonian H1 for all times t < 0 and
H1 + αL · S for t > 0. Suppose that such a system is found to be in the eigenstate φn at
negative times. Assuming [H1, L · S] = 0 as usual, we address to the question of what is the
evolution of the state after the spin–orbit coupling is applied. To this end, we denote the state
φn by a ket of the orbital angular momentum in direct product with a spinor, i.e. |l, ml〉|s,ms〉.
This in turn can be expanded in terms of kets of the total angular momentum j which are the
eigenstates of the system at positive times,

|l, ml〉|s,ms〉 =
l+s∑

j=|l−s|

j∑
m=−j

〈j,m|l, ml, s,ms〉|j,m, s, l〉. (29)

In order to find the ket at time t > 0, we apply the corresponding propagator U =
exp −i(H1 + αL · S)t to both sides of (29) and find

U |n, l,ml〉|s,ms〉 =
l+s∑

j=|l−s|

j∑
m=−j

〈j,m|l, ml, s,ms〉 e−iEn,j,s,l t |n, j,m, s, l〉, (30)

with En,j,s,l the eigenvalues of H1 + αL · S. Since the sum is finite, (30) is a closed result. The
probability density exhibits interference between the different j ’s. For the ground state l = 0
we observe no transient effect.

We can also state in general that any sudden perturbation introducing a finite spectrum
and commuting with H1 gives rise to interference (30) with the appropriate coefficients.

4.2. Evolution of a Gaussian distribution

Now we study the evolution of a specific state ψ as the initial condition for the harmonic
oscillator with the spin–orbit coupling. Let such state be given by

ψ(r, 0) = φ(r)χ := A e− 1
2 ω(r−r0)

2
χ, (31)
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with χ being any spinor and A the appropriate normalization factor. The spatial part of ψ

is merely a translation of the ground state of the ordinary harmonic oscillator of frequency
ω and mass m̄ = 1. It is well known (see [3] for applications to the deuteron in a uniform
electrostatic field) that the translated Gaussian distribution undergoes an oscillatory behaviour
about the origin. When we compute∫

d3r ′′Koscillator(r, r′′; t)φ(r′′) = φ(r, t), (32)

we obtain a probability density

|φ(r, t)|2 = |A|2 e−ω(r−cos (ωt)r0)
2
. (33)

In view of result (27), the initial condition (31) evolves as

ψ(r, t) =
∫

d3r ′′Koscillator(e
αM·Str, r′′; t)ψ(r′′), (34)

and the probability density gives

|ψ(r, t)|2 = |A|2χ † exp(−ω(eαM·Str − cos (ωt)r0)
2)χ

= |A|2χ † exp(−ω(r − cos (ωt) e−αM·Str0)
2)χ. (35)

Therefore, the spin–orbit coupling gives rise to a periodical transformation of the direction
in which the vibration takes place. Actually, the resemblance of that transformation with
a rotational motion of r0 can be easily understood when we replace the magnetic moment
proportional to the spin S by a constant magnetic field B. The propagator becomes

K(r, r′; t) = Koscillator(e
αM·Btr, r′; t). (36)

When (36) is applied to the initial state φ(r) we get a density

|φ(r, t)|2 = |A|2 exp(−ω(r − cos (ωt) e−αM·Btr0)
2), (37)

which truly undergoes a rotational motion in r0 as is expected for a charged particle in a
magnetic field.

4.3. Spectral decomposition and summation formulae

Now we indicate how to write the spectral decomposition for (10) and exploit its properties. Let
H1φ{N} = E

(1)
{N}φ{N} be the time-independent Schroedinger equation satisfied by eigenfunctions

with quantum numbers {N}. When H1 is spherically symmetric we can separate the eigenstates
as

φ{N} = Rnl(r)Y
m
l (r̂) e−iE(1)

nl t (38)

for some radial functions Rnl specified by the problem. Ym
l are spherical harmonics and r̂ is

the unit vector in the direction of r. The propagator of H1 is written as

K1(r, r′; t) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

Rnl(r)Rnl(r
′)Ym

l (r̂)Ym∗
l (r̂ ′) e−iE(1)

nl t . (39)

The spin–orbit coupling introduces a modification of the wavefunctions and energies of the
system:

(H1 + αL · S)ψ{N} = (
E

(1)
{N} + E

(2)
{N}

)
ψ{N} = E{N}ψ{N}, (40)

E
(2)
{N} = E

(2)
j ls = α

2 (j (j + 1) − l(l + 1) − s(s + 1)) being the eigenvalues of αL · S. The
wavefunction is given by

ψ{N} = Rnl(r)Ym
jls(r̂) e−iEnjls , (41)
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with restrictions −j � m � j and |l − s| � j � l + s. Ym
jls are spinorial spherical harmonics.

The complete propagator has a spectral decomposition

K(r, r′; t) = K1(e
αM·Str, r′; t)

=
∞∑

n=0

∞∑
l=0

l+s∑
j=|l−s|

j∑
m=−j

Rnl(r)Rnl(r
′)Ym

jls(r̂)
[
Ym

jls(r̂
′)
]†

e−iEnjls t . (42)

Equation (42) is a closed expression for an infinite sum. Such an expression can be used to
obtain new formulae for series of special functions.

In what follows we restrict to the case s = 1/2, Si = σi/2 and H1 = (p2 + ω2r2)/2. The
complete propagator reads

K(r, r′; t) =
∞∑
l=0

∞∑
n=0

Rnl(r)Rnl(r
′) exp

(
−iω

(
2n + l +

3

2

)
t

) l+ 1
2∑

j=|l− 1
2 |

j∑
m=−j

Ym
jl 1

2
(r̂)

× [
Ym

jl 1
2
(r̂ ′)

]†
exp

(
−i

α

2
t

(
j (j + 1) − l(l + 1) − 3

4

))
. (43)

In the last expression we find a sum of the radial (Gaussian–Laguerre) functions over n. By
examining the propagator for a radial harmonic oscillator written in [4, p 225], we have

∞∑
n=0

Rnl(r)Rnl(r
′) e−iω(2n+l+3/2)t = ω

√
rr ′

i sin ωt
exp

( iω

2
{r2 + r ′ 2} cot ωt

)
Il+1/2

(
ωrr ′

i sin ωt

)
, (44)

with Ik the modified Bessel function of order k. Result (44) can be replaced in the radial part
of (43). We also find in (43) the sum of the angular functions

Kl :=
l+ 1

2∑
j=|l− 1

2 |

j∑
m=−j

Ym
jl 1

2
(r̂)

[
Ym

jl 1
2
(r̂ ′)

]†
exp

(
−i

α

2
t

(
j (j + 1) − l(l + 1) − 3

4

))
, (45)

whose direct computation can be a bit lengthy but rewarding. First let us recall that the
spinorial angular functions are given by

Ym
j=l± 1

2 ,l, 1
2

= ±
√

l ± m + 1
2

2l + 1
Y

m− 1
2

l χ+ +

√
l ∓ m + 1

2

2l + 1
Y

m+ 1
2

l χ−, (46)

χ± being the canonical basis for the s = 1/2 spinors. We find useful the definitions

λ(l, j = l − 1/2) := −(l + 1), λ(l, j = l + 1/2) := l (47)

K±
l :=

∑
m

e−iαλ(l,l± 1
2 )t/2




±
√

l ± m + 1
2

2l + 1
Y

m− 1
2

l√
l ∓ m + 1

2

2l + 1
Y

m+ 1
2

l




(
±

√
l ± m + 1

2

2l + 1
Y

m− 1
2 ∗

l ,

√
l ∓ m + 1

2

2l + 1
Y

m+ 1
2 ∗

l

)

(48)

so that an additional sum over upper and lower sings must be made to obtain

Kl = K+
l + K−

l . (49)
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It is convenient to redefine the index of summation for the total angular momentum
projection. Let µ = m− 1

2 for j = l + 1
2 and µ = m+ 1

2 for j = l− 1
2 so that µ = −l−1, . . . , l

for j = l + 1
2 and µ = −l + 1, . . . , l for j = l − 1

2 . The two parts of Kl are now

K+
l =

l∑
µ=−l−1

e−iαlt/2

2l + 1

×
(

(l + µ + 1)Y
µ

l (r̂)Y
µ∗
l (r̂ ′)

√
l + µ + 1

√
l − µY

µ

l (r̂)Y
µ+1∗
l (r̂ ′)

√
l − µ

√
l + µ + 1Y

µ+1
l (r̂)Y

µ∗
l (r̂ ′) (l − µ)Y

µ+1
l (r̂)Y

µ+1∗
l (r̂ ′)

)
, (50)

K−
l =

l∑
µ=−l+1

eiα(l+1)t/2

2l + 1

×
(

(l − µ + 1)Y
µ−1
l (r̂)Y

µ−1∗
l (r̂ ′) −√

l + µ
√

l − µ + 1Y
µ−1
l (r̂)Y

µ∗
l (r̂ ′)

−√
l + µ

√
l − µ + 1Y

µ

l (r̂)Y
µ−1∗
l (r̂ ′) (l + µ)Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

)
.

(51)

Each of the coefficients in the spinorial matrix can be generated by the action of differential
operators on the angular functions. Using the differential representation for angular momenta

L3 = −i
∂

∂φ
, L± = −i e±iφ

(
±i

∂

∂θ
− cot θ

∂

∂φ

)
(52)

for the upper sign in (48), we have

K+
l =

l∑
µ=−l−1

e−iαlt/2

2l + 1

(
(l + L3 + 1)Y

µ

l (r̂)Y
µ∗
l (r̂ ′) L−Y

µ+1
l (r̂)Y

µ+1∗
l (r̂ ′)

L+Y
µ

l (r̂)Y
µ∗
l (r̂ ′) (l − L3 + 1)Y

µ+1
l (r̂)Y

µ+1∗
l (r̂ ′)

)
. (53)

The lower sign term yields

K−
l =

l∑
µ=−l+1

eiα(l+1)t/2

2l + 1

(
(l − L3)Y

µ−1
l (r̂)Y

µ−1∗
l (r̂ ′) −L−Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

−L+Y
µ−1
l (r̂)Y

µ−1∗
l (r̂ ′) (l + L3)Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

)
. (54)

Here we can go further and re-express the sums

l∑
µ=−l−1

Y
µ+1
l Y

µ+1∗
l =

l∑
µ=−l

Y
µ

l Y
µ∗
l , (55)

l∑
µ=−l+1

Y
µ−1
l Y

µ−1∗
l =

l∑
µ=−l

Y
µ

l Y
µ∗
l − Y l

l Y
l∗
l . (56)

The extra term arising from (56) will vanish after applying the differential operators in (54).
In this way the sums over µ in (53) and (54) are such that µ = −l, . . . , l and we have

K+
l =

l∑
µ=−l

e−iαlt/2

2l + 1

(
(l + L3 + 1)Y

µ

l (r̂)Y
µ∗
l (r̂ ′) L−Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

L+Y
µ

l (r̂)Y
µ∗
l (r̂ ′) (l − L3 + 1)Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

)
, (57)

K−
l =

l∑
µ=−l

eiα(l+1)t/2

2l + 1

(
(l − L3)Y

µ

l (r̂)Y
µ∗
l (r̂ ′) −L−Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

−L+Y
µ

l (r̂)Y
µ∗
l (r̂ ′) (l + L3)Y

µ

l (r̂)Y
µ∗
l (r̂ ′)

)
. (58)
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Other useful relations are
2i

t

∂ e− i
2 αlt

∂α
= l e− i

2 αlt

2i

t

∂ e
i
2 α(l+1)t

∂α
= −(l + 1) e

i
2 α(l+1)t (59)

L · S = 1

2

(
L3 L−
L+ −L3

)
.

When these relations are used in (57) and (58), our expressions become

K+
l =

[
2i

t

∂

∂α
+ 2L · S + 1

] l∑
µ=−l

e−iαlt/2

2l + 1
Y

µ

l (r̂)Y
µ∗
l (r̂ ′) (60)

K−
l = −

[
2i

t

∂

∂α
+ 2L · S + 1

] l∑
µ=−l

eiα(l+1)t/2

2l + 1
Y

µ

l (r̂)Y
µ∗
l (r̂ ′). (61)

Adding the two parts we arrive at the sought result

Kl =
[

2i

t

∂

∂α
+ 2L · S + 1

] l∑
µ=−l

(e−iαlt/2 − eiα(l+1)t/2)

2l + 1
Y

µ

l (r̂)Y
µ∗
l (r̂ ′) (62)

=
[

2i

t

∂

∂α
+ 2L · S + 1

]
(−2i eiαt/4) sin

((
l +

1

2

)
αt/2

)
Pl(cos γ ), (63)

Pl being the lth Legendre polynomial and γ the angle between r̂ and r̂ ′.
Two results can be derived from this formula. The first is achieved by the replacement of

(63) and (44) in (43), leading to

K(r, r′; t) = ω
√

rr ′

i sin ωt
exp

( iω

2
{r2 + r ′ 2} cot ωt

) [
2i

t

∂

∂α
+ 2L · S + 1

]
(−2i eiαt/4)

×
∞∑
l=0

sin

((
l +

1

2

)
αt/2

)
Pl(cos γ )Il+1/2

(
ωrr ′

i sin ωt

)
, (64)

and with the aid of (28) for m = 1, a cancellation of Gaussian factors is possible and we get a
non-trivial formula for a series of Legendre, Fourier and Bessel functions (Pauli matrices also
involved)[

2i

t

∂

∂α
+ 2L · S +

1

2

] ∞∑
l=0

sin

((
l +

1

2

)
αt/2

)
Pl(cos γ )Il+1/2

(
ωrr ′

i sin ωt

)

= i

4π

√
ω e−iαt/2

2πirr ′ sin ωt
exp(−iω csc ωt(e−αM·Str) · r′), (65)

where the matrix elements of e−αM·St can be found in the appendix.
A second result stemming out from (63) is as follows. Consider the spin–orbit coupling

(s = 1/2) alone as the Hamiltonian of the system and whose propagator will be called the
spin–orbit propagator. In such a case we have a spectral decomposition

Kso(r, r′; t) := 〈r| e−iαL·St |r′〉

= δ(r − r ′)
r2

∞∑
l=0

∑
j=l± 1

2

j∑
m=−j

Ym
jl 1

2
(r̂)

[
Ym

jl 1
2
(r̂ ′)

]†
e−iαλ(l,j)t/2, (66)
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and the use of definition (48) together with result (63) turns (64) into

Kso(r, r′, t) = δ(r − r ′)
r2

[
2i

α

∂

∂t
+ 2L · S + 1

]
(−2i eiαt/4)

∞∑
l=0

sin

((
l +

1

2

)
αt/2

)
Pl(cos γ ).

(67)

It can be shown [5] that the sum over l in (67) is given by
∞∑
l=0

sin

((
l +

1

2

)
αt/2

)
Pl(cos γ ) = sign(sin(αt/4))

u[cos(γ ) − cos(αt/2)]√
2(cos(γ ) − cos(αt/2))

, (68)

where u is the unit step function. Thus we also have a closed expression for Kso,
equations (67) and (68).

5. Conclusions

We have succeeded in our attempt to obtain a closed expression of the propagator for spherically
symmetric systems involving the spin–orbit coupling. As a result, kernel (10) was obtained
and it resembles that of the symmetric problem alone, but with a rotational behaviour of one
of its spatial variables which is given by equations (A.1) and (A.12) in the appendix. As
remarked at the end of section 2, it is possible to generalize our method for systems involving
certain (continuous) symmetries with interactions given by their corresponding generators.

Some applications were given though there could be many more. To summarize, the main
results of section 4 consist of the evolution of states under sudden spin–orbit perturbation in
(30), the evolution of Gaussian distributions given by (35) and formulae (65), (67) and (68)
dealing with the case s = 1/2.

Appendix

Now we proceed to compute the matrix elements of R = eξM·S in three-dimensional space (ξ
is any real parameter). This means that our results will be actually spinorial matrices. Such
results will be sufficient to obtain the action of eξM·S on any three-dimensional vector. Let us
start with the transformation

r′ = eξM·Sr. (A.1)

Since the components of r are also functions of the coordinates r1 = x, r2 = y, r3 = z, we
can write

x ′ = eiξL·SxIs, y ′ = eiξL·SyIs, z′ = eiξL·SzIs, (A.2)

where L is the differential operator of angular momentum and Is = ∑s
ms=−s |s,ms〉〈s,ms | is

the identity in spin space. To compute each transformation in (A.2) the coordinates x, y, z

should be expressed in terms of spherical harmonics and xIs, yIs, zIs in terms of spinorial
spherical harmonics by using the appropriate Clebsch–Gordan coefficients:

xI2 =
√

2π

3
r
(
Y−1

1 − Y 1
1

) s∑
ms=−s

|s,ms〉〈s,ms |

=
√

2π

3
r

s∑
ms=−s

1+s∑
j=|1−s|

j∑
m=−j

(〈jm|1,−1, s,ms〉 − 〈jm|1, 1, s,ms〉)Ym
j,1,s〈s,ms |, (A.3)
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yI2 =
√

2π

3
ir

(
Y−1

1 + Y 1
1

) s∑
ms=−s

|s,ms〉〈s,ms | (A.4)

=
√

2π

3
ir

s∑
ms=−s

1+s∑
j=|1−s|

j∑
m=−j

(〈jm|1,−1, s,ms〉 + 〈jm|1, 1, s,ms〉)Ym
j,1,s〈s,ms |, (A.5)

zI2 =
√

4π

3
rY 0

1

s∑
ms=−s

|s,ms〉〈s,ms |

=
√

4π

3
r

s∑
ms=−s

1+s∑
j=|1−s|

j∑
m=−j

〈jm|1, 0, s,ms〉Ym
j,1,s〈s,ms |. (A.6)

The differential operator in (A.2) affects the spinorial spherical harmonic as

eiξL·SYm
jls = exp

(
iξ

2
(j (j + 1) − l(l + 1) − s(s + 1))

)
Ym

jls . (A.7)

The functions Y can also be inverted in terms of canonical spinors and coordinates x, y, z:

Ym
j,1,s =

∑
m′

l ,m
′
s

〈1,m′
l , s,m

′
s |jm1s〉Ym′

l

1 |s,m′
s〉

=
√

3

2π

∑
m′

s

{
1

2
(〈1,−1, s,m′

s |jm1s〉 − 〈1, 1, s,m′
s |jm1s〉)x − i

2
(〈1,−1, s,m′

s |jm1s〉

+ 〈1, 1, s,m′
s |jm1s〉)y +

1√
2
〈1, 0, s,m′

s |jm1s〉z
}
|s,m′

s〉. (A.8)

Therefore, the successive replacement of (A.3), (A.5), (A.6), (A.7) and (A.8) in (A.2) gives
the primed coordinates as linear combinations of x, y, z with spinorial matrices as coefficients

x ′ =
∑

ms,m′
s ,j,m

|s,m′
s〉〈s,ms | e

iξ
2 (j (j+1)−s(s+1)−2)(〈jm|1,−1, s,ms〉 − 〈jm|1, 1, s,ms〉)

×
{

1

2
(〈1,−1, s,m′

s |jm1s〉 − 〈1, 1, s,m′
s |jm1s〉)x − i

2
(〈1,−1, s,m′

s |jm1s〉

+ 〈1, 1, s,m′
s |jm1s〉)y +

1√
2
〈1, 0, s,m′

s |jm1s〉z
}
, (A.9)

y ′ = i
∑

ms,m′
s ,j,m

|s,m′
s〉〈s,ms | e

iξ
2 (j (j+1)−s(s+1)−2)(〈jm|1,−1, s,ms〉 + 〈jm|1, 1, s,ms〉)

×
{

1

2
(〈1,−1, s,m′

s |jm1s〉 − 〈1, 1, s,m′
s |jm1s〉)x − i

2
(〈1,−1, s,m′

s |jm1s〉

+ 〈1, 1, s,m′
s |jm1s〉)y +

1√
2
〈1, 0, s,m′

s |jm1s〉z
}
, (A.10)

z′ =
√

2
∑

ms,m′
s ,j,m

|s,m′
s〉〈s,ms | e

iξ
2 (j (j+1)−s(s+1)−2)〈jm|1, 0, s,ms〉

×
{

1

2
(〈1,−1, s,m′

s |jm1s〉 − 〈1, 1, s,m′
s |jm1s〉)x − i

2
(〈1,−1, s,m′

s |jm1s〉

+ 〈1, 1, s,m′
s |jm1s〉)y +

1√
2
〈1, 0, s,m′

s |jm1s〉z
}
, (A.11)
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which are the explicit transformations of r, rendered as finite sums. Finally, the matrix
elements of the operator R can be read off from (A.9)–(A.11),

Rlk = (eξM·S)lk =
∑

ms,m′
s ,j,m

|s,m′
s〉〈s,ms | e

iξ
2 (j (j+1)−s(s+1)−2)AlBk, (A.12)

with

A1 = 〈jm|1,−1, s,ms〉 − 〈jm|1, 1, s,ms〉
A2 = i(〈jm|1,−1, s,ms〉 + 〈jm|1, 1, s,ms〉) (A.13)

A3 =
√

2〈jm|1,−0, s,ms〉

B1 = 1

2
(〈1,−1, s,m′

s |jm1s〉 − 〈1, 1, s,m′
s |jm1s〉)

B2 = −i

2
(〈1,−1, s,m′

s |jm1s〉 + 〈1, 1, s,m′
s |jm1s〉) (A.14)

B3 = 1√
2
〈1, 0, s,m′

s |jm1s〉

and this holds for any spin.
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